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We investigate the orientational order of transverse polarization vectors of long, stiff polymer molecules
and their coupling to bond orientational and positional order in high density mesophases. Homogeneous
ordering of transverse polarization vector promotes distortions in the hexatic phase, whereas inhomoge-
neous ordering precipitates crystallization of the 2D sections with different orientations of the transverse
polarization vector on each molecule in the unit cell. We propose possible scenarios for going from the
hexatic phase, through the distorted hexatic phase, to the crystalline phase with an orthorhombic unit cell

observed experimentally for the case of DNA.
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The microscopic structure of high density DNA
mesophases is not only of utmost importance for polymer
science in general [1] but has a fundamental bearing also
on topics as far removed from one another as the nature
of the phase diagram of magnetic vortex arrays in type-II
superconductors [2] or the structure of genosomes used
for DNA transfection in gene therapy related studies [1].
By virtue of conventional wisdom at high densities DNA
should form crystals of hexagonal symmetry in the plane
perpendicular to the long axes of the molecules, with long
range positional order, and nematic (or better cholesteric)
arrays with short range positional order at densities
intermediate between the crystalline and isotropic phases.
There are, however, a few refinements one should add to
this picture.

First of all it was found experimentally that DNA in fact
forms several crystalline phases [3,4]. At very high densi-
ties Li"-DNA makes a crystalline phase with orthorhom-
bic symmetry that implies a distorted hexagonal unit cell
perpendicular to the long axes. The probable reason for
this is that there are angular frustrations between neigh-
boring DNA molecules that make hexagonal local sym-
metry energetically costly. A similar situation can also be
encountered in frustrated spin systems, such as in antifer-
romagnets on a triangular lattice or alkyl-chain systems
[5]. In all these cases distorting the hexagonal equilat-
eral into isosceles triangles could lower the angular part in
the interaction energy. In this way two pairs of molecules
are closer to each other, maintaining optimal angles, while
the third pair is further apart and can be in a nonoptimal
configuration.

In addition just below the crystalline phase DNA forms
a line hexatic phase with short range positional order and
long range bond orientational order [6]. The variation of
the positional correlation length as a function of DNA den-
sity shows that positional order within this phase is more
liquid-like (shorter correlation length) the more DNA den-
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sity is increased [7]. This trend is surprising and coun-
terintuitive: one would expect the DNA array to exhibit
increasingly longer ranged positional order approaching
the crystalline phase where it becomes (ideally) infinite.
Again the progressive disordering of DNA could be due
[7] to increasing angular frustration of molecules as they
try to satisfy both the positional and the angular constraints
imposed by the interaction potential.

The question of exactly how angular frustrations could
affect crystalline and bond-orientational order in DNA ar-
rays will be addressed in this contribution. Angular frus-
trations of course correspond to angle dependent terms in
the interaction free energy between DNAs. Recent theo-
retical investigations [8] have indeed made it clear that at
small enough interaxial separations the interaction free en-
ergy depends crucially on the mutual orientation of the
two interacting molecules. This orientation can be speci-
fied in any 2D plane perpendicular to the long axes, by
giving, e.g., the position of the major groove of one mole-
cule with respect to the line joining a pair of them and of
the major groove of the other one with respect to the first
one [8]. This amounts to effectively defining a 2D vector
associated with each of the interacting molecules (we call
it transverse polarization vector, p), perpendicular to their
long axes, and the interaction between them will depend
on their separation as well as their orientation described by
their transverse polarization vectors. Basing our hypothe-
sis loosely on [8] we assume that at low DNA density the
interaction does not depend on the mutual orientation of
molecules, at intermediate densities the interaction is mini-
mal for parallel p orientation while it is minimal for some
finite angle between ps for larger densities.

We assume that the molecules are stiff enough so that
ordering of all 2D sections perpendicular to their long axes
are the same. We consider consecutively two possible
situations. First at intermediate densities the preferred
angle between transverse polarization vectors in all 2D
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sections is assumed to be zero. The transverse polarization
order is thus homogeneous and we describe it with a 2D
constant vector p, in the standard complex form p =
|ple’®, where ¢ is the local angle between the trans-
verse polarization vector and some preferred axis. In the
isotropic 2D liquid, hexatic order is associated with two
symmetric combinations of components of a 6th rank ten-
sor. In the complex form the hexatic order parameter can
be written in terms of the angle 8 between molecular bonds
in the form ¢ = ||e’%?, where 0 = 0 = 2777. The free
energy of hexatic ordering now depends only on Fpex =
fhex(llplz), while the free energy of polar correlations can
be written analogously as Fpo1 = Fpoi(Ip|?). The cou-
pling of these two types of order can be introduced through
an interaction term Fine = Findlel|p|® cos6(p — 0)]. In
this picture the free energy of the isotropic liquid can be-
come unstable with respect to hexatic as well as polar order
parameters.

The total free energy F = Fhex + Jpot T Fine can
now be written as

F = ailyl* + bilyl* + aalpl* + balpl*
+ c1lg] | pl® cos6(p — )
+ elglPlpl cos’6(p — 0) +.... (1)

The last two coupling terms are (up to a renormalization
of ¢) identical to those used in [9] in a different physical
context. This free energy, with by, by, and c; positive to
insure the existence of a global minimum of the system,
has five different stable solutions as obtained by standard
methods. Since our main interest is in the transition from
the hexatic to the distorted hexatic phases, it is sufficient
to present only a typical cross section of the phase diagram
(described in the coordinates ap, a, and c;) in the region
where the isotropic liquid is already unstable, a; < 0. In
this cross section with coordinates (a,, ¢;) the phase dia-
gram has a cusp-like form, Fig. 1.

The relevant stable solutions of Eq. (1) are as follows in
order of increasing density:

(i) Isotropic 2D liquid: || = 0; |p| = 0

(ii) 2D hexatic phase: || # 0; |p| = 0

(iii) Three different distorted hexatic phases with the
property: || # 0; |p| # 0; (A) One with: sin6(¢p —
6) = 0 and cos6(¢p — 0) = 1, thus ¢ = 6 + Z(2n +
1). Obviously here the polar vectors are directed along the
molecular bonds. (B) One with: sin6(¢p — ) = 0 and
cos6(¢p — 0) = —1, thus ¢ = § + Z=. Here the polar
vectors make an angle % with the bond directions. (C) Be-
sides these two there also exists a lower-symmetry phase
with a general angle between the polar vectors and the
bond directions depending on external fields, such as den-
sity, and varying from 0° to 30°.

The point orientational symmetry in 2D planes of these
phases is Cg, for the hexatic phase, C, for distorted hex-
atic phases (A) and (B), and C; for the distorted hexatic
phase (C).
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In a typical case the transitions hexatic — distorted hex-
atic are of the second order. The transition from the hex-
atic phase to the low symmetry distorted hexatic phase
(C) can be either the succession of two indirect 2nd order
transitions or one direct 1st order transition; see Fig. 1.
The distorted hexatic phases A and B are isostructural and
therefore at least in principle there exists a continuous way
to go between them without any phase transition. This
scenario implies that the hexatic order parameter |¢| de-
creases in these distorted hexatic phases until it vanishes,
goes through zero, and reemerges with a different orienta-
tion of the polar vector with respect to the local hexago-
nal axes. More formally this scenario implies that ¢ — 6
should go from 0° to 30°, a path which can be continuous
only if it crosses the point || = 0, where 6 is not defined.
If we assume that the hexatic order is strong enough and
vanishes at no point in the phase diagram, then the only
way from 6 + Z(2n + 1) to 6 + % distorted hexatic is
through two phase transitions.

The deformation of hexatic order (not shown in Fig. 1)
of course follows the symmetry changes of the transverse
polarization vector. It has to be uniaxial with one axis
pointing in the direction of the transverse polarization
vectors of the molecules. This can be seen very easily if
we introduce a parameter quantifying the local distortion of
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FIG. 1. The 2D section of the phase diagram in coordinates a,
and ¢ for a; < 0, Eq. (1). The bold lines mark second order
phase transition lines. The order of the transverse polarization
vector can induce a transition into three types of distorted hex-
atic phases, where the polar ordering is coupled to the uniaxial
distortions of the hexatic “unit cell” (there is no real unit cell in
a hexatic). The hexatic order is indicated with a dotted hexagon.
The directions of the transverse polarization vector in phase (C)
are in between (A) and (B) as indicated by the arrows on the
figure. The resulting elementary unit cells are shown by bold
lines
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the bond orientational (hexatic) field € = |e|e?®, where €
is a combination of the plane strain tensor €;; components:
€= €x — €y T 2i€y € = € — €y — 2i€y.

The coupling terms that do exist are between the trans-
verse polarization vector and the bond order distortion pa-
rameter and have the form |p|?|€|cos2(¢ — a). This term
induces the molecular bond distortion as a secondary (im-
proper) order parameter, when p is different from zero. In
principle we should also add the coupling term between
the distortion parameter and the hexatic order parameter
that should be of the form |e[*|i/| cos3(a — 6). This term
shows that hexatic order in itself cannot induce a distor-
tion and a coupling of the distortion parameter to the polar
order is crucial.

We now consider the case of larger densities where
according to theoretical estimates [8] the preferred angle
between transverse polarization vectors of neighboring
molecules is nonzero. The transverse polarization order is
thus inhomogeneous and we describe it with p(p), where
p = (x,y). In this case the distorted hexatic phases can
give way to lower symmetry phases characterized by a
condensation of waves of the transverse polarization vec-
tor. The condensation of these modes invariably induces
also long range positional order pushing the system from
a distorted hexatic phase into a 2D crystalline phase with
an orthorhombic unit cell.

If the wave condensation starts from the distorted hex-
atic phase A (or B), then, in general, for transverse po-
larization modes, there exist two qualitatively different
choices of the wave vector k directions with respect to the
symmetry plane of the distorted hexatic order Fig. 1. The
direction of the mode can either find itself in the symmetry
plane, in which case it can be described with a single wave
vector, or it can point in a general direction, when it has
to be described with the complete set of (two) directional
wave vectors.

The first case can evidently describe only one dimen-
sional modes. Indeed, here the direction of the mode along
the y axis, characterized by k,, is completely decoupled
from the component along the x axis. We thus obtain or-
der parameter profiles which describe a one-dimensional
modulation of the transverse polarization orientation. Note
that the polarization p is already ordered in the homoge-
neously distorted hexatic phases; then the wave-like reori-
entation of p in the (x, y) plain is described by the wave of
the pseudovector perpendicular to this plain and parallel to
long molecular axes. The angle Q(p) of the reorientation
of p with respect to its direction in the homogeneously
distorted hexatic phase (i.e., A phase) is given by the one-
dimensional wave Q(p) = Q] cos(kyy + B), where |Q]
is the module and g is the phase of the corresponding or-
der parameter (OP).

One of the possible realizations of the resulting or-
dered structure is presented as 1 in Fig. 2. Of course, the
structure should depend on the relation between the wave-
length of the modulation and the average distance between
the molecules. This relation cannot be obtained in the
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framework of the phenomenological theory adopted in the
present work and depends on the constants of the micro-
scopic interaction between DNA molecules. For definite-
ness, we present here (structure 1 in Fig. 2) the limit case,
where the wave vector of the modulation is taken to be
k, = 5e,. Here b is the long side of the orthorhombic
“local unit cell” of the homogeneously distorted hexatic
phase A (Fig. 1); e, is a unit vector along the y axis. Then
the angles of the polarization p directions in adjacent lay-
ers, taken with respect to the y axis are || and —|Q],
respectively.

The only scalar invariant possible in the free energy
describing this transition is [€2|?> with the free energy itself
assuming the form

F =d|QF + 4|0 + ... )

Typically this free energy describes one 2nd order phase
transition at d; = 0. In the x direction, being the di-
rection perpendicular to the direction of the condensed
transverse polarization mode, the system remains liquid
after the phase transition, with continuous translational
symmetry.

In the second case the wave vector k is out of the
symmetry plane of the 2D section of the system. The OP
describing the transverse polarization reorientation mode
is in general four dimensional. Mathematically the irre-
ducible representation has two components, but physically
it has to have four components (if the waves are to be
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FIG. 2. The 2D section of the phase diagram in coordinates d,
and f for d, > 0, Eq. (3). Distorted hexatic A, see Fig. 1, can
give way to crystalline low symmetry phases with condensed
transverse polarization modes. In (1) the transverse polariza-
tion reorientation mode condenses only in one direction coin-
ciding with one of the distorted hexatic “unit cell” vectors. In
phases (2) the angle € of the polarization reorientation is a sum
of two modes with wave vectors out of the symmetry plane of
the 2D section, where the wave amplitudes |€);| are in general
independent.
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real).  Therefore Q(p) = |Q|eBre*iP; Q,(p) =
|Qsle’Pre®ep; Qs(p) = Q1(p); and Qu(p) = Qs (p),
where k; and Kk, have the components ki = (ky,ky)
and k, = (—k,,k,) along the symmetry axes of the
“unit cell” of the homogeneously distorted hexatic phase;
angles |Q;| and |Q;| are two, in general independent
wave amplitudes. The most general form of the resulting
wave, which again has to be real, is Q(p) = >, Q,; =
[1Qlcos(kip + B1) + [Qs]cos(kap + B2)], with B
and 3, being the initial phases of the OP components that
can be made zero by an appropriate choice of the origin.
The free energy of the transverse polarization reorienta-
tion described by this OP depends only on two independent
invariants: I; = |Q4]2 + |Q,]?> and I, = |Q,[2|Q,]%.
The corresponding free energy thus assumes the form

F=dl +dl} + fil, +.... 3)

Apart from the distorted hexatic phases A, B, or C with
homogeneous transverse polarization order || = 0;
|Q,| = 0 already dealt with above, the minimization
of this free energy gives three different stable states:
2a: || # 0; |Q3] =0 or another domain where
the roles of the fields [Q;] and |Q,| are reversed;
2b: || = |Q,|, with either Q; = Q, or Q| = —Qy;
2¢ or the most general form: 0 # |Q;| # |Q,| # 0.

In what follows we shall limit ourselves to the distorted
hexatic A and the phases with nonhomogeneous transverse
polarization order that are derived from it, since the posi-
tional order in the crystalline phase of DNA strongly favors
this type of distortion [7].

Structure 2a, see Fig. 2, has discrete translational or-
der only in one dimension with (as opposed to structure
1) the wave vector making some general angle with the
symmetry plane of the uniformly distorted hexatic phase.
The transverse polarization reorientation mode can be de-
scribed with a simple form Q(p) = [Q1|cos(k;p). The
direction perpendicular to k; remains liquid. Again for
definiteness, we present the limit case where k; is taken
tobe k; = Ze, + 7e,, a and b being the parameters of
the “local unit cell” of phase A.

Structure 2b, see Fig. 2, is represented by the sum of two
transverse polarization modes in the directions of k; and
k, with equal amplitudes. The polarization reorientation
mode thus assumes the form Q(p) = |Q|[cos(k;p) +
cos(k,p)]. Respecting the symmetry of the wave vectors
we present the limit case where k| and k, are chosen in the
fﬂollowing form: k; = %ex + %ey and k, = —gex +
5 €y. Note that structures 1, 2a, and 2b can be described
using only one angular amplitude (see Fig. 2).

Structure 2c, see Fig. 2, presents the most general struc-
ture of the ordered phase with two different directions of
the transverse polarization modes, k| and k; but also with
different amplitudes of the waves || # |€Q;|. To present
the limit structure we choose the wave vectors k; and k,
in the same form as for the previous phase. The symme-
try is broken with respect to phases 2a and 2b: the di-
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rections of the transverse polarizations of the molecules
now make three different angles with respect to the y axis
|Q1] + [Qa], [Q] — [Q], and —|Q] + [Q,].

The phase diagram corresponding to the free energy
Eq. (3) has the form as presented in Fig. 2. All the tran-
sitions between the distorted hexatic phase and modulated
phases, as well as between the modulated phases, are of
second order.

The existence of angular interactions among stiff, ne-
matically ordered, polymer molecules such as DNA, that
depend on the orientation of their transverse polarization
vectors can introduce important modifications into the
phase diagram at intermediate and high densities. If the
equilibrium transverse polarization order is homogeneous
(intermediate densities), corresponding to aligned trans-
verse polarization vectors on neighboring molecules, then
the hexatic phase becomes distorted with one axis of the
local “unit cell” pointing in the direction of the transverse
polarization order. This distortion, that should grow as
one approaches the hexatic-crystal transition, could show
up through a broader positional peak in x-ray scattering,
corresponding to domains of different distorted hexatic
directions, giving a very satisfactory explanation for
observations in DNA [7].

If on the other hand, the equilibrium transverse po-
larization order is inhomogeneous (higher densities),
corresponding to nonzero angles between neighboring
transverse polarization vectors, the corresponding lattice
becomes crystalline with long range positional order either
in one or both directions and with a deformed hexagonal
unit cell. Thus instead of having six equivalent nearest
neighbors, the distorted hexagonal unit cell can give way
to four nearest neighbors at a nonzero angle (energetically
more favorable) between {)s, whereas the more distant
molecules can have the same direction of {2 (energetically
less favorable). This case too could be associated directly
with observations in crystallized DNA arrays [3]. We
are thus able to provide a consistent interpretation for
DNA phase behavior in a range of densities between the
crystalline and the cholesteric phases.
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